Sparse Additive Models
نویسندگان
چکیده
We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is essentially a functional version of the grouped lasso of Yuan and Lin (2006). SpAM is also closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity, enabling the use of arbitrary nonparametric smoothers. We give an analysis of the theoretical properties of sparse additive models, and present empirical results on synthetic and real data, showing that SpAM can be effective in fitting sparse nonparametric models in high dimensional data.
منابع مشابه
Convex-constrained Sparse Additive Modeling and Its Extensions
Sparse additive modeling is a class of effective methods for performing high-dimensional nonparametric regression. In this work we show how shape constraints such as convexity/concavity and their extensions, can be integrated into additive models. The proposed sparse difference of convex additive models (SDCAM) can estimate most continuous functions without any a priori smoothness assumption. M...
متن کاملGroup Sparse Additive Models
We consider the problem of sparse variable selection in nonparametric additive models, with the prior knowledge of the structure among the covariates to encourage those variables within a group to be selected jointly. Previous works either study the group sparsity in the parametric setting (e.g., group lasso), or address the problem in the nonparametric setting without exploiting the structural...
متن کاملSpAM: Sparse Additive Models
We present a new class of models for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive a method for fitting the models that is effective even when the number of covariates is larger than the sample size. A statistical analysis of the properties ...
متن کاملNonparametric regression and classification with joint sparsity constraints
We propose new families of models and algorithms for high-dimensional nonparametric learning with joint sparsity constraints. Our approach is based on a regularization method that enforces common sparsity patterns across different function components in a nonparametric additive model. The algorithms employ a coordinate descent approach that is based on a functional soft-thresholding operator. T...
متن کاملSparse Regularization for High Dimensional Additive Models
We study the behavior of the l1 type of regularization for high dimensional additive models. Our results suggest remarkable similarities and differences between linear regression and additive models in high dimensional settings. In particular, our analysis indicates that, unlike in linear regression, l1 regularization does not yield optimal estimation for additive models of high dimensionality....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008